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Swelling mechanism unique to charged gels: Primary formulation of the free energy
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This paper discusses the principal origin of the swelling behaviors inherent in charged gels. We start from a
general formula for the free energy of the system consisting of a charged gel and the surrounding reservoir.
First, it is clarified that the main term in the ionic contribution to the system free energy when the backbone
network of gel is smeared with uniform density over the gel region is the translational entropy term of small
ions freely mobileover the entire systenand therefore has no contribution to the swelling. Moreover, it is
derived, from the system free energy within the Gaussian approximation, that the effective electrostatic inter-
actions energy between charged groups on the network is obtained from summing the Yukawa-type potential
which is screened by small ions inside a gel as has been speculated before, but that the corresponding
interactions energy in smearing charged groups is to be subtracted from the total. These theoretical investiga-
tions reduce the starting formula for the system free energy to a more tractable form, which reveals that the
ionic swelling behaviors are mainly ascribed to conformational changes of the backbone networks induced by
alterations of the effective electrostatic interaction between charged gi@§#63-651X98)01911-4

PACS numbsdis): 82.70.Gg, 61.25.Hq, 82.60.Lf, 05.70.Ce

I. INTRODUCTION ized polymers with charged group3,7,12. Recent theories
also lack deliberate discussions about the uncertainty; there
Charged gels are jellylike materials consisting of back-are two types of theories for explaining the dependence of
bone charged network®r crosslinked polymer chains with the swelling degree and the elasticity on the ionic conditions
charged groupsand absorbed polar solvents, i.e., suckedexperimentally reportefil3]: some[1,5,6 are mainly based
mixtures of nonionic solvent molecul¢water, for example ~ On the entropic interpretatiofthe first explanationand ad-
and small ions(counterions dissociated from the chargedditionally take into account the effect of the effective elec-
groups and added salts ion$he gels have some remarkable trostatic interactions between charged groups, whereas others
macroscopic propertiqg_:i. First of all, the sweiiing degree [8—11] suppose that the third electrostatic origin is essential
of aqueous gels with charged groups of the same sign i the ionic behaviors. In addition, all of theoretical treat-
much larger than that of uncharged ones in the absence #fents on more advanced subjects, e.g., the volume phase
added salts. The superabsorbent characteristic has be#ansition[1,14,15 and the microphase separatifl6,17,
widely applied to industrial products. Other fascinating phe-belong to the former type.
nomena are abrupt volume changeslume phase transi-  Thus the present paper aims at settling the swelling
tion) induced by changing either the quality of nonionic sol-mechanism unique to charged gels. To this end, it is indis-
vent or ionic conditions such as added salt concentration an@ensable to start from a general formula for the free energy
pH, by applying the electric field, and so h]. The struc-  Of the system, including not only a charged gel but also the
tural transition on a mesoscopic scale has been also disco§trrounding reservoir, which is presented in Sec. Il. In Sec.
ered[1,2]: neutron scattering measurement suggests a posdi. we clarify the main term in the ionic contribution to the
bility that charged gels may undergo the microphasesystem free energy when the backbone network is smeared
separation by changing temperature. with uniform density over the gel region; the principal term
In Spite of the attractive features, an ambiguity remainngfiniteiy determines if the entropic or the potential differ-
concerning the theoretical treatment for charged gels, in th&@nce interpretation is convincing, or both of them are mis-
so far there have coexisted three different interpretations foeading. In Sec. IV, the starting formula for the system free
the Sweiiing mechanism unique to Charged geis: the ioni€nhergy introduced in Sec. Il is reduced to a more tractable
swelling behaviors have been explained by the translationdPrm by evaluating the effective electrostatic interactions en-
entropy difference of small ions between the inside and out€rgy between charged groups within the Gaussian approxi-
side of gel(the entropic origin[1,3—6, the averaged differ- mation. In Sec. V, the reduced form of the system free en-
ence of the Coulomb potential between the both sides  €rgy leads to the conclusion on the swelling mechanism.
potential difference origin[3,7], or the effective electrostatic Section VI is for concluding remarks.
interactions between charged groufi® electrostatic origin
[6-14. o , Il. STARTING FORMULA OF THE
In classical theories, it seems to have been considered that SYSTEM EREE ENERGY
the difference between these explanations is due to the dis-
tinct simplifications of the system generally including local- In experimental studie$l,2,13, a charged gel usually
exists surrounded by a polar solvent. Then, for the purpose
of explaining the swelling behaviors inherent in charged
*Electronic address: furu@exp.t.u-tokyo.ac.jp gels, one has to consider the gel system with the voluige
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consisting of a charged gel with the volurig and the surrounding reservoir, which is illustrated in Fig. 1.
The free energyF of the gel systeni{the system free energyveraged over all possible crosslink realizations may be
expressed a8-10,18

F= —kBTES P(S)In Z(9), (2.2)

with use of the thermal energlggT, the distribution functionP(S) for a particular crosslink configuratio8, and the
constrained partition functiod(S) being of the functional integral forrfil9]

(2.2

Z(S)=f DR(S)H f Dpi(NC{R(s)};9) 9 J dr pi(r)—N; ex{_IBFion({R(SQ)};Z {pi(r)}> :
The meanings of symbols in E@.2) are as follows{R(s)} and{R(s,)} are coordinates sets of monomers and charged

groups, respectively, which are specified by the arc length varistdesls, (a subset o). {p;(r)} is a set of densities for

small ions of theth kind located at the position vectopg covering the entire system. The integral measures are formally

given asDR(s)=II,-s< dR(s) with the total contour length of the netwotkandD p;(r)=11;,dp;(r). C{R(s)};S) stands

for the constraint regarding the network and is written as

N¢

ClR9)}:9= II el(R(s)/9s)>—1]111 oR(sc)—R(sL)], 2.3
0ss<L c=1

where the firs® function on the right hand sidehs) of Eq. (2.3) arises from the geometric constraint for a differentiable curve
and the second with the number of crosslitksis due to a set of crosslinks being®g{s.,s.}. The & function in Eq.(2.2)
relating the density; to the total numbeN; of theith small ions describes the number invariance of the canonical system.
Lastly the ionic free energlion({R(Sq)};Zi{pi}), as a function of both given coordinates set of charged gréBps,)} and
specified densities sets of small ioBg p;(r)}, is given in the forn 19]

IBFion<{R(Sg)};Ei {pi}> fdrf dr’ {ngg(r +E |P|(r)] | (zgpg(r )+2 Zipi(r') | + jdfz pi(NIn pi(r).

(2.9
|
Here the concentration of charged groyggr) is related to _
the position vector§R(sy)} as eXF[—ﬁFion(Pg)]:H J Dpi5U dr Pi_Ni}
Ng Xex{_BFion(a;Ei {pi}”!
pg(N=2, lr—R(sy)] (2.5
g=1 (3.

WhereFion(_;g ;2i{pi}) is obtained by replacinggy(r) in Eq.
with use of the number of charged grougsy, lg  (2.4) with pg.
=e?/4mekgT is the Bjerrum length with the elementary  In terms of the density functional integral for(8.1), the
chargee and the dielectric constast andz, andz are the ~corresponding mean-field free enery is identified with
valences of charged grougthe sign of which is considered the contribution from the saddle-point pd@0]
the same for simplicity in the followingand small ions,
_respectlvely. Note that the conditiomyNy+ EiziNi_=O, is The gel system [vgel]
imposed on the numbers, so that the global electrical neutral-
ity of the system is satisfied.

Ill. MAIN TERM IN THE IONIC FREE ENERGY
FOR THE SMEARED NETWORK

First, let us consider the ionic contribution to the system
free energy when the backbone network is smeared with uni-
form density over the gel region. Denoting such free energy FIG. 1. Schematic of the gel system with the volukigs con-
by F,on(pg) with the smeared value of the charged groupssisting of a charged gel with the volumé, and the surrounding
density given aspg Ng/Vge, We have reservoir of a polar solvent.



PRE 58 SWELLING MECHANISM UNIQUE TO CHARGED GELS. .. 6147

,3|:MF_ jdrf dr’ {zgpg+2 Z(PN))]

fr=r

X{nggnLZ Zi(Pi(r')>] | |

+ | dr> (pi(M)In(pi(N), 3.2 | |
J | [y () : :
where the mean-field density;(r)), satisfying the relation A | |
[ |
5Fion(;g12i {pi}> || | :
=0 (3.3
oy pi={p;)
| 1 > 7

under the condition thafdr p;=N;, is obtained as
FIG. 2. Schematic of the Coulomb potentialr) when charged
groups are smeared uniformly over the gel region. The potential
satisfies the Poisson-Boltzmann equation, i.e., the combination of
(3.4  Egs.(3.4 and(3.1D with settingA =1.

N
<pi(r)>: Tdr eXp{_,BZiel//(r)} exp[—Bzie¢(r)},

with the Coulomb potentiads(r) defined by
f dr exp(— Bziey)
Vsys

1 _
w(r>=%fdr' m[zgpg+2i 2(pi(r ) . -3 Nin
35

Incidentally, the excess free energy due to the deviation of == fo dx BN
small ions density from the mean-field value is evaluated
within the Gaussian approximation in Appendix A, which 1 ANy
gives the conventional Debye kel correction terni7,21]. ZBJ d)\J drY; zie(piy N 3.7
In the following, however, the additional part is ignored for 0 '
simplicity and we sefyn(pg) = Fue -
Substituting Eq(3.4) into the entropy term, i.e., the last and
term on the rhs of Eq3.2), we have

j er (p)In{p;)= 2 N; In o~ —Bf er zie(pi) ¢

sys

[dr exp(— Bziey) _ . 9 Nelo.
—2 N; In Vo = Bfo d)\J’ dr BN [Z Zl)\e<P|>>J//>\J,

Ei Niln:fdr exp(—ﬁzixesz)H

(3.8
~ [ ar 3 zetors. @9

with {p;(r)), and ¢, (r) obtained from replacing in Egs.
With the help of the parametex for charging process (0 (3.4) and(3.5 by \e. In the same way, the mean-field elec-

s\=<1), the last two terms on the rhs of E@.6) are re- trostatic energy, i.e., the first term on the rhs of E82),
written as reads

fdrf dr’ {ngg+2 Z<p|(l’)>} = [ngg‘f'z z{pi(r’ )>} fold)\f dr%

7\[ Z4epgt EI Z@(Pi)x] %}-
(3.9

Equations(3.6)—(3.9) transform expressiofB.2) for the mean-field free enerdyyr to [22]

. Be (1 IN’D®,)  I(AD,)) Ni (1 2
3FMF——7foon\folr[mpA T (x2q>x)]+2 Nilnfys—fod)\ { fdrE

+2 N; Ing—
<3y10)
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Here we have used the Poisson equation

A _
Alﬂx(r)EAAq)x(r):_; depg“‘Ei zie(pi(r' )iy (3.1

and the relationsA®,{d(®,)/ N} —{d(AD,)/oN} D, =0 andV - (&, VD,)=AD,(P,)+(VD,)2 Also E,=—V, is the
electric field with an arbitrary charging parameter

As found from solving the Poisson-Boltzmann equatjery., the combination of Eq$3.4) and (3.11) for A=1], the
electric fieldE, in Eq.(3.10 is localized in the vicinity of the gel surface, except in the trivial cask60, to satisfy the local
electrical neutrality elsewherésee Fig. 2, and hence the first term on the rightmost side of E310 is negligible in
comparison with the other terms for larger gels which are the concerns of the presenf3&pém other words, setting
Fion(;g) =F e as stated above, the main term in the ionic free energy for the smeared network is the translational entropy term
of small ions which are freely mobilever the entire system

_ N;
:8|:ion(f’g)~2i N;In Vo (3.12

sys

IV. REDUCED FORM OF THE SYSTEM FREE ENERGY

Introducing the ionic free energy for the actual netwsrk.{R(s,)},

j dr pi—N; exr{—,@( Fion({R(Sg)};Ei {Pi}>”: (4.1

similarly to Eq.(3.1), the starting formuld2.2) for the constrained partition functiafi(S) is rewritten as

e~ BFor{RsH=TT [ Dpis

Z(S):qu_BFion(;g)]J' DR(s)C({R(9)};9) exr — B(Fion{ R(Sg)} — Fion(pg))]- 4.2

In Appendix B, the difference between the actual ionic free enéigfR(s,)} and the smeared orl'aon(ﬁg) is evaluated
within the Gaussian approximation as

_ 2mlgZ2 |gZ2 exp(— kin|r—r’
BFnlRS9)} ~ Fun(pg)=— 2 peVoart 52 [ [ ar'p(n) Xp(“"_—wpg(rm (4.3

where Kigl is the screening length determined by the concentration of small ions insidesegelalso definitio{A13) in
Appendix A).
Thus, the combination of Eq&2.5), (3.12), (4.2), and(4.3) reduces the system free eneffgygiven by Eqs(2.1) and(2.2)

to
N, 2l _
BF=2 Niln o= 5 (2gpg) Vge— 2 P(S)IN Zye(S) (4.4
I Vsys Kin S
and
1625 & exp(— ki R(sy) —R(sn)])
Z.efS= | DR(S)CUR(S)};S) exp| — —2 9 4.
|
Zq(S) is dependent only on the position vectors of mono- pg [2Cs\2 2C4\2) 372
mers{R(s)}, and may be called the constrained partition /EAH:_E Py 1+ Py ’ (4.6)

function of the backbone network. It is seen from the expo-
nent on the rhs of Eq4.5) that the potential of the effective
electrostatic interactions between charged groups is of th
Yukawa type, which is screened by small ions not outsid
but inside a gel, as has been often speculated before exc
ing Ref.[7].

{ith C, being the concentration of added salt. Equatiéu)
qndica_tes thatAIl vanishes with little added salt§i.e.,
e%tCS/pg< 1) even thoughAIl converges to the conventional

To be noted here, the additional osmotic pressyfg ~ DoQnan form with ‘the opposite sign, i.epAll~
produced by the second term on the rhs of Egd) is ob-  — Pg/4Cs, In the case of fully added salt satisfyinge/pq

tained in the formisee Appendix € >1[6,7]. That is, the second term on the rhs of KE4.4)



PRE 58 SWELLING MECHANISM UNIQUE TO CHARGED GELS. .. 6149

plays no significant role in the ionic swelling behaviors which has no ionic term, and hence reveals that the FR hy-
which are remarkable in weakly screening regime such apothesis is misleading explicitly in the case of the charged
2C/pg=<1. gel system.

Thus it is found that the ionic contribution to the system Indeed, for weakly charged gels, the invalidity of the FR
free energy given by Eq$4.4) and (4.5 mainly arises from hypothesis has been confirmed from evaluating the third
the screened electrostatic interactions energy betweelerm on the rhs of Eq4.4), with use of both the replica trick
charged groups in the constrained partition function of theand the well-known replacemert83—10:
charged networlZ o(S).

2
V. SWELLING MECHANISM UNIQUE TO CHARGED dR
GELS H [ (9R/3s)? 1]—>f ds (as) (5.3

The free energy of the system including a neutral gel has
been often evaluated in the simplest approximation under thgnd
Flory-Rehner(FR) hypothesis[24] that the part from the
interactions of the free energy may be determined indepen-
dently of the network configuration. Applying the assump-

. I 22 N e Kin‘R(sg)_R(sh)l
tion to the present charged gel system, Eg5) reads B9
2

g

— Kiplr=r']
_ B g " K|n|R() R( )‘
znet(S)—exp( 5 png drf dr ) |B( ) f f T - R(s

IR(S) R(s")|’
xf DR(s)C({R(s)};9). (5.1 (5.9

Since the exponent in E5.1) is equal to the second term \herel is the monomer lengttor the cutoff length, ande is
on the rhs of Eq(4.4), expressiong4.4) and (4.5 for the o humber ratio of charged groups to monomers.

system free energl are further simplified as For highly charged gels, on the other hand, the analogy
with the corresponding polyelectrolyte solutions suggests

. that the charged network with little added salts behaves like
F= N;In —— P(S)I DR R
A 2 n Vays E S n[ j (s)cd (S)}’S)]' arigid rod at least in a local scale. Hence, according to Odijk

(5.2 and Skolnick and Fixman theori¢25], we have

lg (g fd f o € R(s") Jd J 4o & STV g Zga)zj'—d #R)|?
20 S S|Rs) R(s)| s],ds |s ST )82\ 1) Jo %\ as?

+X (5.5

denoting byX the term which arises from the electrostatic charged gels. First, it was clarified in Sec. Il that the main
interactions of excluded volume type. The first term on theterm in the ionic free energy for the smeared network is the
rhs of Eq.(5.5 stands for the bending energy of the networktranslational entropy term of small ions freely mobdeer

and reveals the inapplicability of the FR hypothesis; the efthe entire systemand therefore has no contribution to the
fective electrostatic interactions energy is strongly dependendwelling of charged gels. This means the incorrectness of the
on the network configuration. As speculated upon in Reffirst two interpretations described in Sec. I, that the ionic
[11], the sensitive stiffness of the charged network to ionicsyelling is due to the entropic or the potential difference
conditions would play an essential role in the swelling andOrlgln Moreover, it was confirmed in Secs. IV and V that the
elastic properties of highly charged gels. . _effective electrostatic interactions between charged groups

Flnglly, we arrive at the conclus[on that t_he ionic swelling screened by small ions inside a gék., the electrostatic

behaviors of charged gels are mainly ascribed to conformaorlgm) determine the swelling inherent in charged gels. In

tional changes of the backbone networks induced by alter- other words, the superabsorptions of aqueous gels with

ations of the screened electrostatic interaction betweeghar ed aroups of the same sian are due to the screened
charged groups. ged group )

electrostatic repulsive forces between charged groups
stretching out the backbone networks.
This paper suggests the next step: experimental results
In the present paper, the primary formulation for the freesuch as the dependence of the swelling degree and the elas-
energy of the gel system has been performed to obtain thicity on the ionic conditiong1,13], the volume phase tran-
correct explanation for swelling mechanism unique tosition[1], and the microphase separatidn2] are to be re-

VI. CONCLUDING REMARKS
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examined on the basis of the obtained picfureby starting cal system, have elucidated that nonideal terms of the Don-

with expressiong4.4) and(4.5) for the system free enerly nan osmotic pressure are produced by the effective interac-
In closing, we would like to stress that the present formu-tions between confined charges and not by the translational

lation of the charged gel system is general, and is applicablentropy of charges permeable through the membrane, the

to other systems where some charges are localized in subcanonical formulation within our framework would present

gion while others are freely mobile over the entire systeman alternative derivation.

such as asymmetric electrolytémixtures of small ions and

either linear polyions or charged collojdgpolyelectrolyte APPENDIX A: EVALUATION OF THE IONIC FREE
brushes where the chains are attached to planar solid sur- eNergY FOR THE SMEARED NETWORK WITHIN
faces, Donnan membrane systems consisting of both “in- THE GAUSSIAN APPROXIMATION

side” to which some charges are confined and “outside,”

and so on. For a single polyelectrolyte chain and grafted Let ¢;(r) be the density difference between the actual
polyelectrolyte layers, path-integral representations similawvalue p; and the mean-field ongp;):

to Eq. (4.5 using replacement&.3) and (5.4 have often

been (but somewhata priori) used in studying the chain ®i=pi—{pi), (A1)
conformationd 26]. Similar discussions to that in this paper

would clarify the validity of the previous treatments. For and F(pg:=i{¢}) be the difference  between
Donnan membrane systems, on the other hand, although eK:,n(pq;=i{pi}) obtained from replacingy(r) in Eq. (2.4
tensive theoretical investigations of the McMillan-Mayer with pq andF e given by Eq.(3.2). Then,FA(pg;Zi{¢i}) is
type[21], where the “inside” is regarded as a grand canoni-given as

DYDY DR E IR R

fdr[El {<pi(r)>+¢i(r)}ln[1+ <(pi((r;>]+2 ei(N{BzZed( I’)+|n<p|(l’ >}} (A2)

3'%(;@2 Leit

_|_

both Eq.(3.4) and the number conservation condition, i.e.,

The last two terms on the rhs of EGA2) cancel out due to | e-lr=r'l/d
BF am Jdrj dr [ Z|<P|m(f)}w

Z Zioim(r') | + Jd > {(le(r)}

f dr ¢;(r)=0. (A3) 2<p>

(A5)

Moreover, by expanding the logarithmic term in E42) up  Here in and out denote the inside and outside of gel, respec-

to quadratic terms within the Gaussian approximation andjyely, and the first term on the rhs of EepS) is multiplied
using condition(A3), Eg. (A2) is reduced to by the standard convergence facter, " "'!'? (d®~V

| L [21], due to which the infrared divergence is regularized
_'B ' . i without use of the electrical neutrality condition as will be
BFa= 2 fdrf dr {2. Z'QD'(r)] [r—r’| [2. Zipi(r )} seen from Eq(A10). Also ¢;(r) (m=in and ou} are de-
5 fined aseim=pim—{pi)m, and{p;)m are spacially invariant
Jd D {@i(n)} (A4)  Values given as
i 2<p|(r)>
N;
. . . . (Pi)our= (AB)
Since the additional electrostatic interactions energy be- q _
tween inside and outside of gel in EGA4) is principally rexp{— ziey(n)}
ascribed to the supplementary electric field localized to the

surface region of gel and thus may be ignored, &¢t) is and
further simplified as

(Pi)in={Pi)ou EXP{ — BZi€Yp} (A7)
Fo= 2 Fam in terms of the potential differencé¢p between the inside
m=in,out and outside of gelsee Fig. 2 Thus, considerindD pin,

=Dein=IIden(r) and separating the mean-field free en-
and ergy Fue, EQ. (3.1 reads
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exp(— BFion(pg))=exp(— BFye) [T 11

i m=in,out
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(A8)

p(—ﬁFAm(Fg:Z {wi})).

To proceed further, it is convenient to use the FourierHere the screening lengtk,* (m=in and ouj is defined as

transform of p;,(r):

1 .
em(P)= - | drextipnonn  (a9)
m
or (Pim(r)zzpexp(_ip'r)‘Pim(p)1 Wherevin:\/gel and Vot
=Vgys— Vgei- With use ofgin(p), Eq. (A5) is rewritten in
the form

{Z Zi‘Pim(p)]Z

BFAmZZWlanzp: TR

+2 {Zioim(P)}?

T 4mlgzi(pi)m (AL0)

It is to be noted here that constrait&3), i.e., [dr ¢;(r)
~2m—inou®im(P)[p2=0=0 in Eq. (A8), does not necessarily
lead tO(p,m(p)|p2 0=0: the terms 0p?=0 in Eq.(A10) are
relevant.

In the transformation from variables,,(r) to ¢;n(p), we
have D ¢in=(Ji /2;) 11, d{z;¢in(p)} with the JacobianJ;.
Then, the density functional integral in EGA8) is equiva-
lent to the Gaussian integral overe;,(p), which yields
[27]

qu_BFion(;g)): exp(— BFue)

><exp[—,8 _E

o FoHm(Pg) }
(A11)
and

P2+ (1d)?+ k5,
p?+ (1/d)?

1V,
BFDHm—EW J dpIn
(A12)

BRAR(s9h 2 {pih= > BFum,

BF s f ar [ ar [zg<pg<r> AR z.go.m<r}

fd » {oim(N}?

i 2<P|>m

and

K2=4mlg> Zpi)m, (A13)

and we have introduced the usual continuum limit

fdp,

and have ignored the terms which do not affect the swelling
and elastic properties of charged gels.
Performing the integral in EqA12), we obtain

z~

5 = (2,”.)3 (A14)

Fion(Pg) =Fue+ Fou (A15)
and
K
BFpp=— m;mout om Vi, (Al6)

where the ultraviolet divergent terms have been omitted and
Kr;1<d (m=in and ouj has been considered. Note tiftaj
corresponds to the Debye-ekel correction term of simple
electrolyte solution$7,21].

APPENDIX B: DERIVATION OF EQ. (4.3

To derive expressiof¥.3), we have only to evaluate the
ionic free energy for the actual network, i.&,{R(Sy)},
since the smeared one has been obtained in Sec. Il and
Appendix A. The evaluation oF,,{R(sy)} below is per-
formed in parallel to that of Appendix A.

Let ¢;(r) be the concentration difference of thi&a small
ions, andF,({R(sg)};:Zi{¢i}) be the difference between
Fion({R(Sg)}: Zi{pi}) defined by Eq(2.4) andF e given as
Eq. (3.2). By tracing the discussion from Eq&2) to (A7),
we obtain

(B1)

e [r=r'|/d

[Zg(Pg(r) Pg)+2 Zi@im(r’ )]

m=in

(B2)
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| —[r=r'|/d m
BFAout:EB f drf dr'[; Zi‘Pim(r)] e_— (Z ZiQDim(r')J fd 2 o}

|r I',l 2<P|>m B3

m=out m=out

Then, Eq.(4.1) reads analogously to EGA8):

fdrcpi

With use of the Fourier transforms ofpin(r) and pg(r) [which are defined as Eq(A9)] and p4(p)
=(1Nge) Jdr expp-r)py(r), Egs.(B2) and(B3) are transformed to

exp(— pF(RGspD=exnt— Il 11 | Deino

m=in,out

eXF<_:8FAm({R(Sg)};Ei {(IDI})) (B4)

2
> Z¢im(p) pz—O}
~ i {Zi@im(P)| p2—o}?
AFan=2mlgVm (1/d)? 3 oo o
2
[zgpg<p>+2 zisoim(p)] 2
i {zi(Pim(p)}
+2mleVn 2 PP+ (10)? ¥ 4mlszpon) | &
and
|3 awain)
: Zi@im(p)J 2
B | {Zieim(p)}
BRsou=2moVn 2l | (a7 " 2 awigonl |, o

respectively, Wherepim(p)|pz=o¢0 (m=in and ouj is noted similarly to Appendix A. Thus, the Gaussian integral over
Z,oim(p) in Eq. (B4) yields

exp(— BF{R(sy)})=exp(— BF MF)eXp{ _’Bm:%out FDHm({R(Sg)})} : (B7)
~ ((1/d) ) s 1 (PP (U kf| 27 5VgefZgng(P)
B(FDH)m In({R(Sg)}) 2y (]_/—d)Z +p2¢0 E In p2+(1/d)2 p2+(1/d)2+K§1
. ZﬂlBVgel{Zng(p)lpZZO}2+2 E p2+(1/d)2+’<51 27l ngel{zgpg(p)}2 (B8
(1/d)%+ k2, 5 |2 p°+ (1/d)? P+ (1d)%+ k5, |’ )
and
1 PP+ (Ud)2+ k2,
B(Fonm-ol{R(sgN=2 5 In| — iz (89)
with the screening lengtk,,! defined in Eq(A13).
Comparing Eqs(B7), (B8), and(B9) with Egs.(Al1l) and(A12), Eqg. (4.3 is derived:
— 2l BVge&Zng(pﬂpZ:O}z {ngg(p)}z
B(Fion{R(Sg)} —Fion(pg))=— (1) T+ <2 +277IBVgeI2p P (U2t 2
2l z ex alr—r
- Pt L 5 (o[ aroyn 22 e e

In the second line of EqB.10), we have use(ﬂ»g(p)lpz:():;g and «;;*<d.

APPENDIX C: DERIVATION OF EQ. (4.6

The screening lengtk;,* inside a gel defined in EqA13) is evaluated by takingzy| =1z =1 and(Zp;)ou=2Cs, with
the concentration of added s&t as follows: since the total concentrati¢B;p;);, of small ions inside a gel is given as
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<Z pi> =2Ccosh Beyp), (€Y
in
and the local electrical neutrality condition inside a gel is written as
Zgpg=2Csinh Beyp), (C2
we obtain
K =4mlg(p5+4CHY? (C3)

with use of the relation codlx—sini? x=1. Substituting Eq(C3) into the second term on the rhs of Hg.4), the additional

osmotic pressurdll is obtained:

d 1 P2V el Pq [2Cs\2 2C4\?%) %2
ATl=p2 — {— (— 99 =325 (= . c4
P & 9Py {nggel 2{pg+4cyt? 2\ pg Py (€4
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